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Forward-Looking Measures of Higher-Order

Dependencies with an Application to Portfolio

Selection

Abstract

This paper provides implied measures of higher-order dependencies between assets.

The measures exploit only forward-looking information from the options market and

can be used to construct an implied estimator of the covariance, co-skewness, and

co-kurtosis matrices of asset returns. We implement the estimator using a sample

of US stocks. We show that the higher-order dependencies vary heavily over time

and identify which driving them. Furthermore, we run a portfolio selection exercise

and show that investors can benefit from the better out-of-sample performance of

our estimator compared to various historical benchmark estimators. The benefit is

up to seven percent per year.

EFM Classification Code: 370
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I Introduction

The dependence structure between assets is a key element of many problems in

finance. It is needed, for example, to calculate the risk position of financial in-

stitutions, to measure contagion effects possibly leading to financial crises, to find

appropriate hedging instruments, and to select optimal asset portfolios. Since the re-

turns of many assets are not normally distributed, one has to go beyond covariances

and take dependencies in higher-order moments, like co-skewness and co-kurtosis,

into account to get a reliable picture of the dependence structure between assets.

However, estimating the dependence structure in higher-order moments is hard since

the number of parameters to be estimated increases exponentially with the number

of assets in the portfolio. Take, for example, a simple portfolio selection problem

where the investor can choose among 30 stocks. If the investor ignores higher-order

moments and adopts the classical mean-variance-approach, she has to estimate ’only’

495 parameters. However, if she incorporates skewness and kurtosis, the number of

parameters to be estimated goes up to 46,375, most of them characterizing the

dependence structure. This huge number of parameters is not only a high computa-

tional burden but also leads to serious estimation risk since the dependence between

assets might change over time. For example, it is well known that correlations go

up when the market goes down (see, e.g., Longin and Solnik (2001)).

We address this problem by suggesting a new way to estimate higher-order de-

pendencies between assets. We impose a structure on the co-moment matrices to

reduce the number of parameters and use option-implied information instead of

time-series information to estimate the remaining ones. Thus, our approach is in-

herently forward-looking and incorporates most recent market information. Given

the empirical evidence that implied estimators for the covariance matrix perform

better than historical estimators (see, e.g., Kempf, Korn, and Saßning (2011)), one

might expect that implied estimators for higher-order moments are a promising way

to get useful estimates for the higher-order dependence structure of assets.
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Our paper makes two major contributions. On the theoretical side, we develop the

first implied dependence measures for higher-order moments. We capture higher-

order dependencies by the skewness-correlation and the kurtosis-correlation. These

correlations have intuitive interpretations. Our implied skewness-correlation (kurtosis-

correlation) expresses the market expectation on how a shock in one asset will affect

the volatility (skewness) of other assets. Furthermore, we show how these corre-

lations can be used as the key element to construct an implied estimator of the

full covariance, co-skewness, and co-kurtosis matrices. On the empirical side, we

provide evidence on the characteristics of the implied correlations over time and

identify factors driving the higher-order dependencies. Furthermore, we show that

our implied estimator of higher-order co-moment matrices is valuable for investors.

For a sample of US blue-chip stocks, we show that a portfolio strategy using our

implied estimator beats several portfolio strategies using historical estimators. The

monetary utility gains from using the implied estimator instead of a historical esti-

mator are huge. They go up to seven percent per year. The investor benefits from

our implied estimator the more, the more risk averse she is and the monetary utility

gains are highest in a sub-period that contains the time of the financial crisis.

Our work is related to three strands of literature. The first strand consists of papers

developing implied estimators of risk and dependence. Skintzi and Refenes (2005)

propose an implied correlation index as a measure of average correlation in a mar-

ket and Driessen, Maenhout, and Vilkov (2009) provide evidence on the difference

between implied correlations and realized correlations. Buss and Vilkov (2012) use

option-implied correlations to construct predictors of beta coefficients. Alternative

option-implied betas are derived by Chang, Christoffersen, Jacobs, and Vainberg

(2012) and Kempf, Korn, and Saßning (2011).1 All these paper investigate depen-

dence only in terms of second moments. We extend this literature by proposing

implied dependence measures for higher-order moments.

The second strand of literature shows that option-implied information on higher-

1See Baule, Korn, and Saßning (2013) for an empirical comparison of different implied beta
estimators and Christoffersen, Jacobs, and Chang (2012) for a recent survey on implied estimation
that also covers implied correlations and betas.
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order moments can be valuable in portfolio problems. Kostakis, Panigirtzoglou, and

Skiadopoulos (2011) and Aı̈t-Sahalia and Brandt (2008) estimate whole marginal dis-

tributions from options data, i.e., they exploit implied information on all moments.

However, the approach by Kostakis, Panigirtzoglou, and Skiadopoulos (2011) does

not require any knowledge about dependence structures and Aı̈t-Sahalia and Brandt

(2008) use historical estimates to determine dependencies. DeMiguel, Plyakha, Up-

pal, and Vilkov (2012) show that implied skewness can be used to improve the

performance of parametric portfolio policies. However, they make no attempt to

exploit higher-order co-moments. Thus, none of these papers on portfolio problems

uses option-implied information on the higher-order dependence structure. We are

the first to show that option-implied information on higher-order dependencies is

useful for portfolio optimization.

Finally, we extend the scarce literature on estimating higher-order moments in the

context of portfolio optimization. Harvey, Liechty, Liechty, and Muller (2010) use a

Bayesian approach to account for the severe estimation risk via predictive distribu-

tions. Martellini and Ziemann (2010) develop structured estimators of higher-order

co-moment matrices based on the assumptions of constant correlations or a single-

factor model. However, none of these papers uses any option-implied information.

This is the main difference to our paper which estimates higher-order moments using

forward-looking information from the options market only.

The remainder of the paper is organized as follows. In Section II, we develop our

implied dependence measures and the implied estimator of the full covariance, co-

skewness, and co-kurtosis matrices. Section III describes the data and in Section IV

we provide information about the empirical properties of the dependence measures

and the factor underlying them. In section V, we present the portfolio application.

Section VI concludes.
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II Implied Estimators of Dependencies

Consider a set of N assets with random returns R1, . . . , RN and denote the centered

returns as R̄i := Ri−E(Ri), i = 1, . . . , N . The n-th central return moment of asset

i is denoted by µ
(n)
i . To characterize the dependence between these assets, we define

the following generalized correlation coefficients for second to fourth moments:

ρV arij :=
E(R̄iR̄j)√
µ
(2)
i µ

(2)
j

,

ρSkew1,iij :=
E(R̄2

i R̄j)√
µ
(4)
i µ

(2)
j

,

ρSkew2,ijk :=
E(R̄iR̄jR̄k)√
µ
(2)
k

√
µ
(4)
i µ

(4)
j

,

ρKurt1,iiij :=
E(R̄3

i R̄j)√
µ
(6)
i µ

(2)
j

, (1)

ρKurt2,iijj :=
E(R̄2

i R̄
2
j )√

µ
(4)
i µ

(4)
j

,

ρKurt3,iijk :=
E(R̄2

i R̄jR̄k)√
µ
(4)
i

√
µ
(4)
j µ

(4)
k

,

ρKurt4,ijkl :=
E(R̄iR̄jR̄kR̄l)√√
µ
(4)
i µ

(4)
j

√
µ
(4)
k µ

(4)
l

,

with i, j, k, l = 1, . . . , N,

i 6= j 6= k 6= l.

ρV arij is the standard correlation coefficient. It measures the impact of a shock in one

asset on the expected return in another asset. Consider a negative shock on asset j.

Then a positive return correlation ρV arij implies that we expect a negative deviation

from its mean return also for stock i. The other six correlations in Equations (1) have
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similar interpretations. For example, if the skewness-correlation ρSkew1,iij is positive and

we observe a negative shock in asset j, the conditional variance of asset i decreases.

Similarly, a negative shock in asset j would lead to a lower conditional skewness

of stock i if the kurtosis-correlation ρKurt1,iiij is positive. Note that all correlation

coefficients are bounded between −1 and +1.2

To reduce the number of parameters characterizing the dependence structure, we

follow the same idea as Martellini and Ziemann (2010) and assume constant corre-

lations. In particular, we assume that the dependence structure can be described

using three correlation coefficients (ρV ar, ρSkew, and ρKurt) only. This implies that

the standard correlations, the skewness-correlations and the kurtosis-correlations

are all constant across assets and that the two skewness-correlations (four kurtosis-

correlations) are equal.

We now estimate the correlations ρV ar, ρSkew, and ρKurt from a cross-section of op-

tions on individual stocks and the index option. The risk of the index is determined

by the risk of the underlying stocks and the three correlations. We characterize the

risk of the index portfolio using the higher-order co-moment matrices M2, M3, and

M4 introduced by Jondeau and Rockinger (2006):

M2 := E{(R− E{R})(R− E{R})tr},

M3 := E{(R− E{R})(R− E{R})tr ⊗ (R− E{R})tr}, (2)

M4 := E{(R− E{R})(R− E{R})tr ⊗ (R− E{R})tr ⊗ (R− E{R})tr}.

M2 is the covariance matrix, M3 the co-skewness matrix, and M4 the co-kurtosis

matrix. R denotes the N -vector of asset returns and ⊗ is the Kronecker prod-

uct. Jondeau and Rockinger (2006) show that the variance µ
(2)
p , skewness µ

(3)
p , and

2This property can be seen using the Cauchy-Schwarz inequality: For two random variables X
and Y , |E(XY )| ≤

√
E(X2)E(Y 2).
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kurtosis µ
(4)
p of the index portfolio return can be written as

µ(2)
p = ωtrM2 ω

µ(3)
p = ωtrM3 (ω ⊗ ω) (3)

µ(4)
p = ωtrM4 (ω ⊗ ω ⊗ ω).

The N -vector ω denotes the weights of the stocks in the index portfolio. Given

our constant correlation assumption, we can rewrite Equations (3) as functions of

the correlations ρV ar, ρSkew, and ρKurt. To do so, we define an auxiliary matrix

ΩV ar ∈MN×N(R) as

ΩV ar
ii = 0,

ΩV ar
ij =

√
µ
(2)
i µ

(2)
j for all i 6= j.

Using this auxiliary matrix ΩV ar we can rewrite the covariance matrix as

M2 = diag(µ
(2)
1 , ..., µ

(2)
N ) + ρV ar · ΩV ar (4)

and the portfolio variance as

µ(2)
p = ωtr [diag(µ

(2)
1 , ..., µ

(2)
N ) + ρV ar · ΩV ar]ω. (5)

In the same spirit, we define the auxiliary matrix ΩSkew ∈MN×N2(R) as

ΩSkew
iii = 0

ΩSkew
iij =

√
µ
(4)
i µ

(2)
j for all i 6= j

ΩSkew
ijk =

√
µ
(2)
k

√
µ
(4)
i µ

(4)
j for all i 6= j 6= k.
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The co-skewness matrix can be rewritten as

M3 = diag(µ
(3)
1 , ..., µ

(3)
N ) + ρSkew · ΩSkew (6)

and the portfolio skewness as

µ(3)
p = ωtr [diag(µ

(3)
1 , ..., µ

(3)
N ) + ρSkew · ΩSkew] (ω ⊗ ω). (7)

Finally, we define the auxiliary matrix ΩKurt ∈MN×N3(R) as

ΩKurt
iiii = 0

ΩKurt
iiij =

√
µ
(6)
i µ

(2)
j for all i 6= j

ΩKurt
iijj =

√
µ
(4)
i µ

(4)
j for all i 6= j

ΩKurt
iijk =

√
µ
(4)
i

√
µ
(4)
j µ

(4)
k for all i 6= j 6= k

ΩKurt
ijkl =

√√
µ
(4)
i µ

(4)
j

√
µ
(4)
k µ

(4)
l for all i 6= j 6= k 6= l,

leading to

M4 = diag(µ
(4)
1 , ..., µ

(4)
N ) + ρKurt · ΩKurt (8)

and

µ(4)
p = ωtr [diag(µ

(4)
1 , ..., µ

(4)
N ) + ρKurt · ΩKurt] (ω ⊗ ω ⊗ ω). (9)

Solving Equations (5), (7), and (9) for the generalized correlations leads to :

ρV ar =
µ
(2)
p − ωtr [diag(µ

(2)
1 , ..., µ

(2)
N )]ω

ωtrΩV ar ω
, (10)

ρSkew =
µ
(3)
p − ωtr [diag(µ

(3)
1 , ..., µ

(3)
N )] (ω ⊗ ω)

ωtrΩSkew (ω ⊗ ω)
, (11)

ρKurt =
µ
(4)
p − ωtr [diag(µ

(4)
1 , ..., µ

(4)
N )] (ω ⊗ ω ⊗ ω)

ωtrΩKurt (ω ⊗ ω ⊗ ω)
. (12)
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The expressions on the right hand side of Equations (10) to (12) depend on the

portfolio weights, the second to fourth central moments of the portfolio and the

second, third, fourth, and sixth moments of the individual assets.

If options on the index and on all component stocks are available, we can estimate the

correlation structure using option information only. We take the implied moments

needed from plain-vanilla options written on the index and on individual assets

and use the known index weights. With the estimation of the implied correlation

estimators, we have also solved the problem of implied estimation of the whole co-

moment matrices M2, M3, and M4 in Equations (4), (6) and (8). All remaining

parameters, in particular the auxiliary matrices ΩV ar, ΩSkew, and ΩKurt, can easily

be obtained from the implied moments of the individual stock returns.

III Data

The data set for our empirical study consists of the stocks constituting the Dow

Jones Industrial Average (DJIA) for the period January 1998 to January 2012. For

each point of time, we consider only the 30 stocks which form the index at that

time.

To implement our implied estimators of generalized correlations and co-moment

matrices, we need prices of European-style options for all individual stocks and the

Dow Jones Index. We calculate these prices from the volatility surfaces provided

by IvyDB. We use all available strike prices for the 30 days maturity bucket, select

all out-of-the-money put and call options, and fit a cubic spline to obtain a smooth

volatility curve for each stock and the index. Outside the available range of strike

prices, we assume that the volatility curve is flat. Then, we select 1000 equally

spaced strike prices on the interval [0.003 · Si, 3 · Si], where Si denotes the current

spot price of the ith asset. For these 1000 strike prices we finally calculate prices of

European options from the corresponding implied volatilities via the Black-Scholes

formula. These calculations use the matching spot prices for all stocks and the index

9



as well as the risk-free interest rates provided by IvyDB. We calculate monthly option

prices and choose the first trading day after the expiration day of options contracts

at CBOE within a month, since there are liquid options with a time to maturity of

about 30 days at these days.

Using this data set, we calculate model-free implied moments. This idea of not using

a particular valuation model goes back to Breeden and Litzenberger (1978), who

show that the complete risk-neutral return distribution can be derived from option

prices if a continuum of strike prices is available. Based on the result by Bakshi

and Madan (2000) that any payoff function can be spanned by explicit positions

in options with different strike prices, Bakshi, Kapadia, and Madan (2003) provide

pricing formulas for contracts whose payoffs equal the squared return, the cubed

return, quadrupled return etc.3 For our purposes, we need the returns up to the

power of six. The fair values of the corresponding contracts Quad, Cubic, Quartic,

Quintic, and Hexic are provided in the appendix together with the formulas that

show how the model-free implied second to sixth central return moments can be

obtained from the prices of these contracts.

In Section IV we provide characteristics of the implied generalized correlations ρV ar,

ρSkew, and ρKurt. In Section V, we compare a portfolio strategy using the implied

estimator of the co-moment matrices M2, M3, and M4 with portfolio strategies

using various historical estimators. To implement the historical estimators and

to calculate monthly out-of-sample returns for the trading strategies, we take stock

prices (adjusted for dividends and stock splits) from Datastream. Since the historical

estimators use estimation windows of up to 120 months, we have to take stock price

data for the period January 1988 to January 2012.

3The formulas given in the original work by Bakshi, Kapadia, and Madan (2003) refer to log
returns. See Christoffersen, Jacobs, and Chang (2012) for corresponding formulas referring to
simple returns. The latter are used in this study.
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IV Characteristics of Generalized Correlations

We now analyze the estimated dependence structure. In Section A we provide

descriptive evidence on how the dependence structure changes over time and in

Section B we identify factors that determine the strength of the dependencies.

A Dynamics of Generalized Correlations

Figure 1 shows the monthly implied estimates of the generalized correlation coeffi-

cients ρV ar, ρSkew, and ρKurt for the period February 1998 to January 2012.

[ Insert Figure 1 about here ]

The solid line in Figure 1 shows how the standard correlation ρV ar evolves over time.

Not surprisingly, it is always positive, i.e., a negative shock in one stock goes along

with a price reduction in other stocks. On average, the correlation is 0.45 but it goes

up to 0.85 during the recent financial crisis. This is consistent with earlier evidence

that correlations go up when markets go down.

The sign of the skewness-correlation ρSkew is almost always negative, as shown by

the dotted line. It can be as low as -0.49. This finding means that a negative shock

in one of the assets is associated with an increase in the volatility of other stocks.

This finding complements earlier evidence showing that a negative shock in a stock

tends to increase the volatility of the same stock.

For the kurtosis-correlation ρKurt, we generally find positive values (dashed line).

They are almost as high as the value for ρV ar and reach its maximum at 0.78. This

result suggests that a negative shock in one stock makes the returns of other stocks

more skewed to the left.

Figure 1 shows that all implied dependencies change dramatically over time. This

finding suggests that not only the standard correlation but also the skewness-

correlation and the kurtosis-correlation are hard to estimate from time-series data.
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From 2004 to 2007, the (absolute) values of all three dependence measures are rel-

atively low, and from 2008 onwards they are relatively high. This is an indication

for stronger contagion effects in the financial crisis. A shock in one stock affects the

moments of other stocks more severely during the crisis than during quiet periods.

We also observe that the three implied dependence measures clearly move together.

If ρV ar is high, then ρSkew tends to be low (more negative) and ρKurt tends to be

high. The corresponding correlations between ρV ar and ρSkew and between ρV ar

and ρKurt are -0.73 and 0.96, respectively. This is bad news for investors since a

negative shock in one stock has a strong negative impact on the expected returns,

the variances and the skewnesses of other stocks. The expected returns decrease, the

variances increase, and the stocks become more skewed to the left. Thus, the saying

that diversification benefits tend to be low at times when they are most needed holds

not only for second moments but also for moments of higher order.

B Determinants of Generalized Correlations

We now analyze factors determining the generalized correlation coefficients. We run

regressions with our generalized correlation coefficients ρV ar, ρSkew, and ρKurt as the

dependent variables.

Our first explanatory variable is the market risk since it has been documented for

a long time that the standard correlation goes up when market risk goes up (see,

e.g., King and Wadhwani (1990), Longin and Solnik (1995)). We use two variables

to capture market risk. The first variable, the index variance, measures the general

market risk and the second variable, the index skewness, captures the crash risk

in the market. Both variables are calculated for the same trading days as our

correlation coefficients using our model in Section II.

Longin and Solnik (2001) show that the standard correlation is related to the market

trend. Therefore, we include the market trend as an additional variable in our

regressions. More specifically, we define a dummy variable which takes on the value
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1 when the return of the previous month is negative and larger (in absolute terms)

than one standard deviation. Otherwise this downturn dummy takes the value of

zero.

Next, we consider investor sentiment in our regressions since Kumar and Lee (2006)

have shown that sentiment makes retail investors trade similarly leading to return

comovements. To capture retail investor sentiment, we use the Individual Investor

Sentiment Index (AAII) which is obtained from a survey of the American Association

of Individual Investors among its members.

As a further explanatory variable we use the importance of common factors for

explaining stock returns. The rationale is that we expect to see a higher correlation

when stock returns depend on common factors to a higher degree. To capture the

relative importance of common factors, we estimate a Carhart 4-factor model using

daily returns of the previous month. We then calculate how much of the return

variance is explained by this model and relate the explained variance to the overall

variance. We do so for each stock in our sample separately, calculate the average

across stocks, and take this average number as our measure of the importance of

common factors for explaining stock returns.

Since our generalized correlation measures are derived from options prices and, there-

fore, reflect the expectations of market participants in the options market, we use

two further control variables. We control for the impact of the general economic out-

look on the expectations by using the OECD Composite Leading Indicator US as an

additional explanatory variable. The Composite Leading Indicator comprises differ-

ent macroeconomic and financial variables that are known to be leading indicators of

economic growth. In addition, we take into account that market participants might

change their expectations about return dependencies only gradually. Therefore, we

also include the corresponding lagged (generalized) correlation in the regressions.

[ Insert Table 1 about here ]

In Table 1 we present the results of our regressions. In all regressions, we calculate
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Newey-West standard errors with 12 lags to account for residual autocorrelation and

heteroscedasticity. The dependent variable is the implied standard correlation, ρV ar,

in the first column, the implied skewness-correlation, ρSkew, in the second column,

and the implied kurtosis-correlation, ρKurt, in the third column.

The first column shows that the standard correlation increases when the market

risk becomes larger. The positive coefficient for the index variance means that the

correlation goes up when the market becomes more volatile, and the negative coef-

ficient for the index skewness implies that the correlation goes up when the market

becomes more skewed to the left. Thus, both, the general market risk (index vari-

ance) and the crash risk (index skewness), have a significant impact on the standard

correlation. This is consistent with what we expect given the evidence in the litera-

ture. Moreover, we find a significant negative impact of the downturn dummy, which

means that correlation goes up when the market goes down. This is consistent with

the view that the market trend has an additional influence even after controlling for

market risk. The highly significant and negative coefficient of the investor sentiment

proxy indicates that the standard correlation goes up when investor sentiment be-

comes bad. This finding is consistent with Kumar and Lee (2006) and suggests that

investors treat different stocks similarly when their sentiment is bad. There is also

a strong impact of the importance of common factors for explaining stock returns.

This finding is highly sensible: If stock returns are mainly driven by common factors

and not by idiosyncratic factors, we observe a higher standard correlation between

the stocks. We also find that the correlation expected by the market participants

depends on what the market participants expect about the future economic growth.

The worse the economic outlook, the higher the implied correlation is. This is con-

sistent with our findings that the correlation goes up when the expected market

risk (captured by the implied variance and implied skewness) increases: The worse

the expectation about the future situation, the higher the correlation is. The sig-

nificantly positive coefficient for the lagged correlation suggests that the correlation

expectations of market participants are somewhat persistent.

Turning to the higher-order correlations shows that the kurtosis-correlation depends
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on the factors in the same way as the standard correlation. Thus, if a factor increases

the standard correlation it also increases the kurtosis-correlation. In such a situation,

investors who observe a negative shock in one stock not only expect that the returns

of other stocks go down (reflected in the positive standard correlation) but they

also expect that the crash risk of other stocks goes up (reflected in the positive

kurtosis-correlation).

Looking at the skewness-correlation shows that ρSkew also depends on the market

risk. The signs of the coefficients suggest that an increase in the market risk (index

becomes more volatile and more skewed to the left) makes the skewness-correlation

more negative. However, we find only a significant impact of the crash risk (mea-

sured by the index skewness) whereas the general market risk is not significant at

conventional levels (p-value = 0.17). Besides market risk, the importance of common

factors for explaining stock returns has a strong impact on the skewness-correlation:

The skewness-correlation becomes the more negative, the more important common

factor are for explaining stock returns. The downturn dummy and the investor sen-

timent have no significant impact on the skewness-correlation. Like for the other

implied correlation measures, we find that the expected skewness-correlation de-

pends on the general economic outlook and on the expectation a month ago: The

worse the outlook, the more negative the skewness-correlation is.

Overall, the standard correlation and higher-order correlations are well explained

by the explanatory variables. The explanatory power is equally high in all regres-

sions. Furthermore, we find that the control variables economic outlook and lagged

correlation are significant, no matter which implied correlation we analyze. This

suggests that the investors adjust their expectations about future dependencies only

gradually and in accordance with their expectations about future economic growth.

Looking at the other explanatory variables shows that standard correlation and

kurtosis-correlation are driven by the same set of variables. First, they increase

with the market risk, they are higher in market downturns, during periods when

investor sentiment is bad and when stock returns are better explained by common
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factors. When looking at the skewness-correlation, only a subset of our explana-

tory variables (market risk, importance of common factors) is significant whereas

the market downturn and investor sentiment are not significant at the conventional

levels. To understand that difference, we have to keep in mind that the standard

correlation and the kurtosis-correlation provide directional information about fu-

ture returns whereas the skewness-correlation provides only information about the

variability of future returns. The standard correlation (kurtosis-correlation) tells us

what return (crash risk) the investors expect in other stocks when they receive a

negative signal in one stock. For example, it is highly sensible that a negative signal

in one stock makes them expect a worse return (higher crash risk) in other stocks

when their sentiment is bad. However, it is not clear why that signal would make

them expect the other stocks to be more volatile when their sentiment is bad. That

is what a significant impact of investor sentiment on skewness-correlation would

imply.

V Portfolio Application

A The Portfolio Problem

We analyze a standard one-period expected utility maximization. For an infinitely

differentiable utility function U , the utility of the investor’s terminal wealth can be

written as:

U(W ) =
∞∑
k=0

[
U (k)(E{W})

k!
(W − E{W})k

]
, (13)

with W = (1 + ωtrR).

ω denotes a column vector of length N and contains the portfolio weights of the

N different assets. R denotes the corresponding column random vector of asset

returns over the period. Without loss of generality, the investor’s initial wealth is
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normalized to unity in Equation (13). We follow the typical approach and assume

that the utility function is well approximated by a fourth-order polynomial. Thus,

the expected utility of the investor is given as:

E{U(W )} ≈ U(E{W}) +
U (2)(E{W})

2
µ(2)

+
U (3)(E{W})

6
µ(3) +

U (4)(E{W})
24

µ(4), (14)

with µ(2) = ωtrM2 ω,

µ(3) = ωtrM3 (ω ⊗ ω),

µ(4) = ωtrM4 (ω ⊗ ω ⊗ ω).

M2 denotes the covariance matrix of asset returns, M3 the co-skewness matrix, and

M4 the co-kurtosis matrix. It is well known that expected returns are very difficult

to estimate (see, e.g., Merton (1980)) and that portfolio strategies ignoring expected

returns typically perform better (see, e.g., Michaud (1989), Best and Grauer (1991),

and Chopra and Ziemba (1993)). Therefore, we make no attempt to estimate ex-

pected returns and focus on minimizing the risk of the portfolio. The portfolio risk

depends on the variance, skewness, and kurtosis of the portfolio return.

To be able to solve for the optimal portfolio weights, we have to specify the util-

ity function in Equation (14). We assume that the investor has CRRA preferences

with a relative risk aversion γ. We impose short-sales constraints since such re-

strictions typically improve the out-of-sample performance of investment strategies

(see, e.g., Frost and Savarino (1988), Jagannathan and Ma (2003), and DeMiguel,

Garlappi, and Uppal (2009)). Given these assumptions, the optimization problem
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of the investor can be written as:

arg max
ω∈RN

[
− γ

2
ωtrM2ω +

γ(γ + 1)

6
ωtrM3(ω ⊗ ω)

− γ(γ + 1)(γ + 2)

24
ωtrM4(ω ⊗ ω ⊗ ω)

]
, (15)

s.t.
N∑
i=1

ωi = 1,

wi ≥ 0, ∀i.

Equation (15) shows that an investor with CRRA utility has a preference for low

variance, high skewness, and low kurtosis. This preference structure is consistent

with Rubinstein (1973), Kraus and Litzenberger (1976), and Scott and Horvath

(1980) who show that only weak assumptions on the utility functions are needed to

derive preferences for low variance, high skewness, and low kurtosis. Furthermore,

Equation (15) shows that higher moments are the more important to an investor,

the more risk averse she is.

B Design of the Empirical Portfolio Study

To implement the optimal investment strategy arising from (15), we have to estimate

the matrices M2, M3, and M4. We use five different ways to estimate the matrices.

The first estimator is our fully-implied estimator derived in Section II. The other

four estimators serve as historical benchmarks. We use the simple sample estimator

(Sample) as our first benchmark. The other benchmarks are the estimators derived

by Martellini and Ziemann (2010) for estimating higher-order moments. Their two

structured estimators assume constant correlations (CC) and a single-factor model

(FM), respectively. Their other two estimators shrink the sample estimates of the

moment matrices M2, M3, and M4 towards the estimates obtained under the con-

stant correlation (Sh CC) or the single-factor model (Sh FM).
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Based on each estimator, we set up the following investment strategy. In each

month, we use the respective estimator to obtain M2, M3, and M4. Based on these

estimates, we derive the optimal portfolio using (15). Then we calculate the out-

of-sample one-month return of this portfolio. This procedure gives us 168 monthly

portfolio returns for each of the estimators.

To compare the performance of the investment strategy based on the implied esti-

mator with the benchmark strategies, we calculate monetary utility gains (MUGs)

as in Ang and Bekaert (2002). For γ 6= 1 the MUG is given as:

1

168

168∑
t=1

(1 + rimplt )1−γ − 1

1− γ
=

1

168

168∑
t=1

(
(1 +MUG) · (1 + rbmt )

)1−γ − 1

1− γ
. (16)

rimpl denotes the return of an trading strategy using the implied estimator and rbm

the return of a benchmark strategy using a historical estimator. Thus, MUG is the

monetary compensation (in percentage points) that an investor requires to be willing

to switch from the portfolio strategy using the implied estimator to a benchmark

portfolio strategy using a historical estimator. A positive MUG means that the

investor prefers the implied estimator and is willing to use the historical estimators

only if she gets a compensation. Therefore, a positive MUG indicates that the

implied estimator is superior to the respective historical estimator. In the following

section we report annualized MUGs which are calculated as (1 +MUG)12 − 1.

C Main Results

Table 2 reports the annualized monetary utility gains (MUGs) of the implied portfo-

lio strategy relative to the five historical benchmark strategies based on the sample

estimator (Sample), the estimator based on the assumption of constant correlations

(CC), the estimator using a factor model (FM), the shrinkage model towards con-

stant correlation (Sh CC), and shrinkage model towards the factor model (Sh FM),

respectively. The relative risk aversion of the investor is γ = 10. In the first column
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the historical estimators use an estimation window of 60 months and in the second

column an estimation window of 120 months.

[ Insert Table 2 about here ]

The main result of Table 2 is that the MUGs are positive in all cases (no matter

whether the historical estimators use an estimation window of 60 or 120 months).

This means that investors would be willing to use a historical estimator instead of

the implied estimator only if they get a monetary compensation. The size of the

required compensation ranges from 2.4% to 4.8% per year. These are huge numbers

given that the average returns of the benchmark strategies are only between six and

seven percent per year. This result shows that our implied estimator is very valuable

for investors.

In Table 3 we compare the implied strategy with various partially implied strategies

to analyze how much of the MUGs come from using option-implied information to

estimate the co-skewness and co-kurtosis matrices. The partially implied strategies

use our implied estimator for the covariance matrix and historical estimators for the

higher moments. The historical estimators are the same as in Table 2.

[ Insert Table 3 about here ]

Table 3 shows that the MUGs are much smaller than in Table 2 but still positive. The

required compensation is between 0.4% and 1.2% per year. This means that investors

would be willing to use a historical estimator for higher moments and co-moments

instead of the implied estimator only if they get a sizable compensation. The level

of required compensation is about the same as in Ang and Bekaert (2002). This

suggests that using implied estimators for higher moments is about as important for

investors as taking into account that model parameters might be different in different

regimes. This is sensible since a major advantage of our implied estimator is that it

does not use historical information and, thus, immediately adjusts when the regime

changes. Comparing our results with those in Martellini and Ziemann (2010) shows
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that the marginal contribution of our implied estimator for higher-order moments

is larger than the marginal contribution of their structured estimators. They report

a maximum required compensation of 0.26% per year in Panel B of their Table 10.

In Table 4 we provide information about the portfolio composition when using dif-

ferent estimators. We report the average number of stocks held in the portfolio

(first column) and the average Gini coefficient of the portfolio (second column).

The averages are calculated across the monthly portfolio weight observations.

[ Insert Table 4 about here ]

Table 4 shows that the implied estimator leads to more concentrated portfolios. The

number of stocks held is lower and the Gini coefficient is higher. On average, the

investor picks only about nine stocks from the investment universe of thirty stocks

when using the implied estimator. For the historical estimators, the number of

stocks held is larger by two to four stocks. Together with our results in Table 2,

this finding suggests that the implied estimators allows the investors to better pick

appropriate stocks.

D Robustness Checks

In Table 5 we repeat the analysis of Table 2 but now for different levels of risk

aversion. The risk aversion is varied from γ = 5 to γ = 15. We use an estimation

window of 60 months for the benchmark strategies.

[ Insert Table 5 about here ]

Table 5 clearly shows that the MUGs are the larger the more risk averse the investors

are. This finding holds for each benchmark strategy. Averaged across the benchmark

strategies, we find an average MUG of 2.2% for γ = 5, 3.2% for γ = 10, and 4.1%

for γ = 15. Thus, investors value the implied estimator more if they are more

risk averse. This result is highly sensible since variance, skewness, and kurtosis
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are the more important, the more risk averse investors are (see Equation (15)).

Therefore, investors with a higher risk aversion benefit more from an improved

moment estimation.

We next check whether our results depend on the size of the investment universe.

So far, we assume that the investor can choose from an investment universe of 30

stocks. We now restrict the investment universe to 20 (10) stocks that are randomly

drawn out of the 30 stocks constituting the Dow Jones Industrial Average (DJIA).

Using this restricted investment universe, we repeat the analysis of Table 2. We do

so 100 times for the investment universe of 20 stocks and another 100 times for the

investment universe of 10 stocks. The average MUGs and the percentage of positive

MUGs (in brackets) are reported in Table 6. For comparison reasons we repeat the

numbers for N=30 stocks from Table 2. We again use an estimation window of 60

months for the benchmark strategies.

[ Insert Table 6 about here ]

Table 6 shows that the average MUGs are positive in all cases. Thus, our main result

is robust with respect to the size of the investment universe. Averaged across the

benchmark strategies, we find a positive relation between the size of the investment

universe and the size of the MUGs (average MUG = 2.52% for N=10, average

MUG = 2.61% for N=20, MUG = 3.21% for N=30), but this relation does not hold

when looking at the benchmark strategies separately. However, what we see for

each benchmark strategy is that the probability of achieving a positive MUG goes

up when the investment universe becomes larger. Averaged across the benchmark

strategies, we find that the probability of achieving a positive MUG is 81.2% for

N=10 and 91.6% for N=20. This suggests that an investor can pocket the gains of

our implied estimator more easily when she holds a larger portfolio.

In our final robustness check we split our sample in two sub-samples of equal length.

The first sub-sample covers the period from February 1998 to January 2005 and the

second sub-sample the period from February 2005 to January 2012. We repeat the
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analysis of Table 2 for both sub-samples and again use an estimation window of 60

months for the benchmark strategies. Table 7 presents the resulting MUGs.

[ Insert Table 7 about here ]

Table 7 suggests that our main result is not sample specific. The MUGs are positive

in both sub-samples. Interestingly, the MUGs are much larger in the second sub-

period. A possible reason for this finding is that this period covers the financial crisis.

Kempf, Korn, and Saßning (2011) argue that implied estimators perform particularly

well in crisis periods for two reasons: First, historical time series are less useful in

crisis periods due to the strong inflow of new information. Second, option prices

carry more information in crisis periods since the fraction of informed traders in

the option market goes up. This makes option prices more informative. Therefore,

the implied estimator is particular attractive in crisis periods which should lead to

higher MUGs. That is exactly what we find.

VI Conclusions

This paper investigates higher-order dependencies between assets. Since dependen-

cies are known to change over time and, therefore, hard to estimate from time-series

information, we suggest a novel way to estimate higher-order dependencies. Our

model allows us to derive generalized correlation coefficients for skewness and kur-

tosis using only current option-implied information. We do not need any time-series

information to estimate them. Thus, our approach is inherently forward-looking

and incorporates most recent information from options markets. The implied gen-

eralized correlations have intuitive interpretations in term of the expected impact

that a shock in one asset has on the expected return, variance, and skewness of

other assets. The correlations build the basis for an implied estimator of the full

covariance, co-skewness, and co-kurtosis matrices that we also present in this paper.

In an empirical study for US blue-chip stocks, we provide evidence on the charac-

teristics of the implied generalized correlations over time. We document that the
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correlations vary heavily over time and detect the factors that determine the implied

correlations. We first show that investors adjust their expectations about future de-

pendencies only gradually and in accordance with their expectations about future

economic growth. We then find that standard correlation and kurtosis-correlation

are driven by the same set of factors. Both correlations increase with the market

risk, they are higher in market downturns, during periods when investor sentiment is

bad and when stock returns are better explained by common factors. The skewness-

correlation, however, depends only on a subset of our explanatory variables (market

risk, importance of common factors). This is sensible since the standard correlation

and the kurtosis-correlation provide directional information about future returns

whereas the skewness-correlation provides only information about the variability of

future returns.

We use the implied generalized correlations in a empirical portfolio optimization

exercise. An out-of-sample study for the same universe of US blue-chip stocks shows

that our implied estimator of higher-order moment matrices is very valuable for

investors that seek optimal portfolios based on second to fourth moments. We find

that a portfolio strategy based on the implied estimator beats several benchmark

strategies based on historical estimators. The monetary utility gains from using

the implied estimator instead of historical estimators are huge and can reach up to

seven percent per year. In a robustness analysis, we find that the implied estimator

is superior for a wide range of investors with different risk aversions, for alternative

sizes of the investment universe, and different sub-periods.

A major issue for future research is the risk-adjustment of option-implied higher

moments. The moments used in this study are obtained under the risk-neutral

measure, whereas most applications require moments under the physical measure. If

appropriate risk-adjustments are available, further improvements in the assessment

of higher-order dependencies are likely. Unfortunately, such a risk-adjustment is

difficult since very little is known about risk premiums for higher-order co-moments.

The implied estimators of these co-moments that we develop in this paper, however,

offer a way to study such risk premiums empirically.
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Appendix

Bakshi, Kapadia, and Madan (2003) show how to price contracts whose payoffs

equal different powers of the returns. For our analysis, we need powers up to the

order of six. Denote the arbitrage-free prices at time t for contracts maturing at

time t + τ by Quad (squared returns), Cubic (cubed returns), Quartic (quadrupled

returns), Quintic (returns to the power of five), and Hexic (returns to the power of

six). According to Bakshi, Kapadia, and Madan (2003), these prices equal

Quad =
2

S2
t

 ∞∫
St

C(t, τ,K)dK +

St∫
0

P (t, τ,K)dK


Cubic =

6

S2
t

 ∞∫
St

K − St
St

C(t, τ,K)dK +

St∫
0

K − St
St

P (t, τ,K)dK


Quartic =

12

S2
t

 ∞∫
St

(
K − St
St

)2

C(t, τ,K)dK +

St∫
0

(
K − St
St

)2

P (t, τ,K)dK


Quintic =

20

S2
t

 ∞∫
St

(
K − St
St

)3

C(t, τ,K)dK +

St∫
0

(
K − St
St

)3

P (t, τ,K)dK


Hexic =

30

S2
t

 ∞∫
St

(
K − St
St

)4

C(t, τ,K)dK +

St∫
0

(
K − St
St

)4

P (t, τ,K)dK

 ,
where St is the current spot price, K the strike price, and C and P denote the

prices of call and put options, respectively. Using these contract prices, the model-

free implied second, third, fourth, and sixth central return moments of asset i can

be written as
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µ
(2)
i, impl = erτQuadi − Eq[Ri]

2,

µ
(3)
i, impl = erτCubici − 3Eq[Ri]e

rτQuadi + 2Eq[Ri]
3, (17)

µ
(4)
i, impl = erτQuartici − 4Eq[Ri]e

rτCubici + 6Eq[Ri]
2erτQuadi − 3Eq[Ri]

4,

µ
(6)
i, impl = erτHexici − 6erτQuinticiE

q[Ri] + 15erτQuarticiE
q[Ri]

2

−20erτCubiciE
q[Ri]

3 + 15erτQuadiE
q[Ri]

4 − 5Eq[Ri]
6,

where r denotes the risk-free interest rate per year for the period τ and Eq[Ri] the

risk-neutral expectation of the ith asset. The risk-neutral expectation is given by

Eq[Ri] = erτ − 1.

The expressions in Equations (17) together with this expectation deliver the mo-

ments of individual stocks that we use for our analysis. Implied moments for the

Dow Jones Index are obtained in the same way.
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Figure 1: Implied Estimates of Generalized Correlations Over Time.
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This figure shows the implied estimates of the standard and the higher-order correlations ρV ar,
ρSkew, and ρKurt over time. All correlations are calculated as described in Section II. The time
period is February 1998 to January 2012 and the stock universe consists of the 30 stocks included
in the Dow Jones Industrial Average (DJIA).
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Table 1: Determinants of Implied Correlations.

ρV ar ρSkew ρKurt

Constant 0.940 -0.613 1.982
(0.004) (0.000) (0.000)

Index Variance 6.801 -4.522 8.881
(0.067) (0.172) (0.050)

Index Skewness -0.066 0.153 -0.143
(0.002) (0.000) (0.000)

Market Downturn 0.059 -0.019 0.057
(0.005) (0.124) (0.087)

Investor Sentiment -0.063 0.000 -0.070
(0.000) (0.995) (0.009)

Importance of Common Factors 0.287 -0.161 0.267
(0.000) (0.000) (0.000)

Economic Outlook -0.010 0.008 -0.021
(0.001) (0.000) (0.000)

Lagged Correlation 0.500 0.359 0.386
(0.000) (0.000) (0.000)

Adjusted R2 0.745 0.745 0.657

This table shows the results of multivariate regressions using monthly observations for the period
February 1998 to January 2012. The dependent variable is the standard correlation, ρV ar, in the
first column, the skewness-correlation, ρSkew, in the second column, and the kurtosis-correlation,
ρKurt, in the third column. The time series of the dependent variables are shown in Figure 1. The
independent variables are as follows. We use the implied index variance and the implied index
skewness to capture symmetric market risk and market crash risk, respectively. Both variables
are calculated using our model in Section II. To measure the market trend, we use a downturn
dummy that takes on the value 1 when the return of the previous month is negative and larger (in
absolute terms) than one standard deviation. Otherwise the downturn dummy takes the value of
zero. We capture investor sentiment using the Individual Investor Sentiment Index of the American
Association of Individual Investors. The importance of common factors measures how important
common factors are for explaining stock returns. To capture the importance of common factors, we
first estimate for each stock a Carhart 4-factor model using daily returns of the previous month. We
then calculate how much of the return variance is explained by this model and relate the explained
variance to the overall variance. We do so for each stock in our sample, calculate the average
across stocks, and take this average number as our explanatory variable. The economic outlook
is measured by the OECD Composite Leading Indicator US. Finally, we use the corresponding
lagged correlations to capture the effect that market participants might revise their expectations
only gradually. In all regressions, we calculate Newey-West standard errors with 12 lags and report
p-values in brackets.
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Table 2: Monetary Utility Gains: Implied Moment Estimator versus Historical
Estimators.

60 Months 120 Months

Sample 2.66% 2.69%

CC 4.82% 4.11%

FM 2.82% 2.71%

Sh CC 3.35% 3.32%

Sh FM 2.39% 2.69%

This table shows the annualized monetary utility gains of the investment strategy using the implied
estimator relative to an investment strategy using a historical estimator. The monetary utility
gains are calculated based on Equation (16) and annualized as (1 + MUG)12 − 1. The historical
estimators are the sample estimator (Sample), the estimator based on the assumption of constant
correlations (CC), the estimator using a one-factor model (FM), the shrinkage model towards
constant correlation (Sh CC), and the shrinkage model towards the factor model (Sh FM). In the
first column the historical estimators use an estimation window of 60 months and in the second
column an estimation window of 120 months. The relative risk aversion of the investor is γ = 10.
The out-of-sample sample period is February 1998 to January 2012 and the investment universe
consists of the stocks included in the Dow Jones Industrial Average (DJIA).
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Table 3: Monetary Utility Gains: Implied Moment Estimator versus Partially Im-
plied Estimators.

60 Months 120 Months

Sample 1.25% 0.37%

CC 0.66% 0.71%

FM 0.49% 0.42%

Sh CC 0.63% 0.68%

Sh FM 0.82% 0.69%

This table shows the annualized monetary utility gains of the investment strategy using the implied
estimator relative to an investment strategy using a partially implied estimator. The monetary
utility gains are calculated based on Equation (16) and annualized as (1 +MUG)12 − 1. The par-
tially implied estimators consist of an implied estimator for the covariance matrix and historical
estimators for the co-skewness and co-kurtosis matrices. The historical estimators are the sample
estimator (Sample), the estimator based on the assumption of constant correlations (CC), the esti-
mator using a one-factor model (FM), the shrinkage model towards constant correlation (Sh CC),
and the shrinkage model towards the factor model (Sh FM). In the first column the historical esti-
mators use an estimation window of 60 months and in the second column an estimation window of
120 months. The relative risk aversion of the investor is γ = 10. The out-of-sample sample period
is February 1998 to January 2012 and the investment universe consists of the stocks included in
the Dow Jones Industrial Average (DJIA).
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Table 4: Concentration Measures of Portfolios Based on Different Moment Esti-
mators.

Number of Stocks Held Gini Coefficient

Implied 8.77 82.59%

Sample 11.13 78.02%

CC 12.82 78.05%

FM 12.12 77.60%

Sh CC 12.97 77.07%

Sh FM 12.77 76.03%

This table shows the average number of stocks and the Gini coefficient of the portfolios under-
lying Table 2. We report values for the portfolios using the implied estimator (Implied), the
sample estimator (Sample), the estimator based on the assumption of constant correlations (CC),
the estimator using a one-factor model (FM), the shrinkage model towards constant correlation
(Sh CC), and the shrinkage model towards the factor model (Sh FM). The estimation window for
the historical estimators is 60 months.
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Table 5: Monetary Utility Gains for Different Levels of Risk Aversion: Implied
Moment Estimator versus Historical Estimators.

γ = 5 γ = 10 γ = 15

Sample 2.05% 2.66% 2.79%

CC 3.09% 4.82% 7.00%

FM 2.00% 2.82% 3.61%

Sh CC 2.31% 3.35% 4.61%

Sh FM 1.78% 2.39% 2.71%

This table replicates Table 2 for different levels of relative risk aversion. The relative risk aversion
of the investor is γ = 5, γ = 10, and γ = 15, respectively. The estimation window for the historical
estimators is 60 months.
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Table 6: Monetary Utility Gains for Different Sizes of the Investment Universe:
Implied Moment Estimator versus Historical Estimators.

N = 10 N = 20 N = 30

Sample 2.43% (79%) 2.08% (85%) 2.66%

CC 3.45% (89%) 4.46% (100%) 4.82%

FM 1.85% (73%) 1.70% (88%) 2.82%

Sh CC 2.84% (86%) 3.01% (99%) 3.35%

Sh FM 2.02% (79%) 1.81% (86%) 2.39%

This table replicates Table 2 for different sizes of the investment universe. We restrict the invest-
ment universe to N=20 (N=10) stocks which are randomly drawn out of the 30 stocks constituting
the Dow Jones Industrial Average (DJIA). Using this restricted investment universe, we repeat
the analysis of Table 2. We do so 100 times for the investment universe of 20 stocks and another
100 times for the investment universe of 10 stocks. The average MUGs and the percentage of
positive MUGs (in brackets) are reported for N=10 and N=20. For comparison reasons we repeat
the numbers for N=30 stocks from Table 2. The estimation window for the historical estimators
is 60 months.
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Table 7: Monetary Utility Gains for Different Sub-periods: Implied Moment Esti-
mator versus Historical Estimators.

Period Feb 1998 – Jan 2005 Period Feb 2005 – Jan 2012

Sample 1.31% 4.16%

CC 4.37% 5.32%

FM 1.95% 3.79%

Sh CC 2.43% 4.38%

Sh FM 1.25% 3.66%

This table replicates Table 2 for different sub-periods. The first sub-period covers February 1998 to
January 2005 and the second sub-period February 2005 to January 2012. The estimation window
for the historical estimators is 60 months.
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