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Forward-Looking Measures of Higher-Order
Dependencies with an Application to Portfolio
Selection

Abstract

This paper provides implied measures of higher-order dependencies between assets.
The measures exploit only forward-looking information from the options market and
can be used to construct an implied estimator of the covariance, co-skewness, and
co-kurtosis matrices of asset returns. We implement the estimator using a sample
of US stocks. We show that the higher-order dependencies vary heavily over time
and identify which driving them. Furthermore, we run a portfolio selection exercise
and show that investors can benefit from the better out-of-sample performance of
our estimator compared to various historical benchmark estimators. The benefit is

up to seven percent per year.

EFM Classification Code: 370



I Introduction

The dependence structure between assets is a key element of many problems in
finance. It is needed, for example, to calculate the risk position of financial in-
stitutions, to measure contagion effects possibly leading to financial crises, to find
appropriate hedging instruments, and to select optimal asset portfolios. Since the re-
turns of many assets are not normally distributed, one has to go beyond covariances
and take dependencies in higher-order moments, like co-skewness and co-kurtosis,

into account to get a reliable picture of the dependence structure between assets.

However, estimating the dependence structure in higher-order moments is hard since
the number of parameters to be estimated increases exponentially with the number
of assets in the portfolio. Take, for example, a simple portfolio selection problem
where the investor can choose among 30 stocks. If the investor ignores higher-order
moments and adopts the classical mean-variance-approach, she has to estimate "only’
495 parameters. However, if she incorporates skewness and kurtosis, the number of
parameters to be estimated goes up to 46,375, most of them characterizing the
dependence structure. This huge number of parameters is not only a high computa-
tional burden but also leads to serious estimation risk since the dependence between
assets might change over time. For example, it is well known that correlations go

up when the market goes down (see, e.g., Longin and Solnik (2001)).

We address this problem by suggesting a new way to estimate higher-order de-
pendencies between assets. We impose a structure on the co-moment matrices to
reduce the number of parameters and use option-implied information instead of
time-series information to estimate the remaining ones. Thus, our approach is in-
herently forward-looking and incorporates most recent market information. Given
the empirical evidence that implied estimators for the covariance matrix perform
better than historical estimators (see, e.g., Kempf, Korn, and Safining (2011)), one
might expect that implied estimators for higher-order moments are a promising way

to get useful estimates for the higher-order dependence structure of assets.



Our paper makes two major contributions. On the theoretical side, we develop the
first implied dependence measures for higher-order moments. We capture higher-
order dependencies by the skewness-correlation and the kurtosis-correlation. These
correlations have intuitive interpretations. Our implied skewness-correlation (kurtosis-
correlation) expresses the market expectation on how a shock in one asset will affect
the volatility (skewness) of other assets. Furthermore, we show how these corre-
lations can be used as the key element to construct an implied estimator of the
full covariance, co-skewness, and co-kurtosis matrices. On the empirical side, we
provide evidence on the characteristics of the implied correlations over time and
identify factors driving the higher-order dependencies. Furthermore, we show that
our implied estimator of higher-order co-moment matrices is valuable for investors.
For a sample of US blue-chip stocks, we show that a portfolio strategy using our
implied estimator beats several portfolio strategies using historical estimators. The
monetary utility gains from using the implied estimator instead of a historical esti-
mator are huge. They go up to seven percent per year. The investor benefits from
our implied estimator the more, the more risk averse she is and the monetary utility

gains are highest in a sub-period that contains the time of the financial crisis.

Our work is related to three strands of literature. The first strand consists of papers
developing implied estimators of risk and dependence. Skintzi and Refenes (2005)
propose an implied correlation index as a measure of average correlation in a mar-
ket and Driessen, Maenhout, and Vilkov (2009) provide evidence on the difference
between implied correlations and realized correlations. Buss and Vilkov (2012) use
option-implied correlations to construct predictors of beta coefficients. Alternative
option-implied betas are derived by Chang, Christoffersen, Jacobs, and Vainberg
(2012) and Kempf, Korn, and Safining (2011).! All these paper investigate depen-
dence only in terms of second moments. We extend this literature by proposing

implied dependence measures for higher-order moments.

The second strand of literature shows that option-implied information on higher-

!See Baule, Korn, and Safining (2013) for an empirical comparison of different implied beta
estimators and Christoffersen, Jacobs, and Chang (2012) for a recent survey on implied estimation
that also covers implied correlations and betas.



order moments can be valuable in portfolio problems. Kostakis, Panigirtzoglou, and
Skiadopoulos (2011) and Ait-Sahalia and Brandt (2008) estimate whole marginal dis-
tributions from options data, i.e., they exploit implied information on all moments.
However, the approach by Kostakis, Panigirtzoglou, and Skiadopoulos (2011) does
not require any knowledge about dependence structures and Ait-Sahalia and Brandt
(2008) use historical estimates to determine dependencies. DeMiguel, Plyakha, Up-
pal, and Vilkov (2012) show that implied skewness can be used to improve the
performance of parametric portfolio policies. However, they make no attempt to
exploit higher-order co-moments. Thus, none of these papers on portfolio problems
uses option-implied information on the higher-order dependence structure. We are
the first to show that option-implied information on higher-order dependencies is

useful for portfolio optimization.

Finally, we extend the scarce literature on estimating higher-order moments in the
context of portfolio optimization. Harvey, Liechty, Liechty, and Muller (2010) use a
Bayesian approach to account for the severe estimation risk via predictive distribu-
tions. Martellini and Ziemann (2010) develop structured estimators of higher-order
co-moment matrices based on the assumptions of constant correlations or a single-
factor model. However, none of these papers uses any option-implied information.
This is the main difference to our paper which estimates higher-order moments using

forward-looking information from the options market only.

The remainder of the paper is organized as follows. In Section II, we develop our
implied dependence measures and the implied estimator of the full covariance, co-
skewness, and co-kurtosis matrices. Section III describes the data and in Section IV
we provide information about the empirical properties of the dependence measures
and the factor underlying them. In section V, we present the portfolio application.

Section VI concludes.



II Implied Estimators of Dependencies

Consider a set of N assets with random returns Ry, ..., Ry and denote the centered
returns as R; := R; — E(R;),i = 1,..., N. The n-th central return moment of asset
1 is denoted by ,ul("). To characterize the dependence between these assets, we define

the following generalized correlation coefficients for second to fourth moments:
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pl‘g‘” is the standard correlation coefficient. It measures the impact of a shock in one

asset on the expected return in another asset. Consider a negative shock on asset j.

Then a positive return correlation p):%"

. implies that we expect a negative deviation

from its mean return also for stock 7. The other six correlations in Equations (1) have



similar interpretations. For example, if the skewness-correlation p? ’jgw is positive and
we observe a negative shock in asset j, the conditional variance of asset ¢ decreases.

Similarly, a negative shock in asset j would lead to a lower conditional skewness

Kurt

of stock i if the kurtosis-correlation pi*i7 is positive. Note that all correlation

coefficients are bounded between —1 and +1.2

To reduce the number of parameters characterizing the dependence structure, we
follow the same idea as Martellini and Ziemann (2010) and assume constant corre-
lations. In particular, we assume that the dependence structure can be described

Var Skew
)

p ’ and pKurt)

using three correlation coefficients (p only. This implies that
the standard correlations, the skewness-correlations and the kurtosis-correlations
are all constant across assets and that the two skewness-correlations (four kurtosis-
correlations) are equal.

Var - pSkew “and p&urt from a cross-section of op-

We now estimate the correlations p
tions on individual stocks and the index option. The risk of the index is determined
by the risk of the underlying stocks and the three correlations. We characterize the
risk of the index portfolio using the higher-order co-moment matrices My, M3, and

M, introduced by Jondeau and Rockinger (2006):

M, = E{(R- E{R})(R— E{R})"}.
My = E{(R-E{R})(R- E{R})" ® (R - E{R})"}, (2)
My = E{(R- E{R})(R— E{R})" ® (R - E{R})" ® (R~ E{R})"}.

M is the covariance matrix, Mj the co-skewness matrix, and M, the co-kurtosis

matrix. R denotes the N-vector of asset returns and ® is the Kronecker prod-

uct. Jondeau and Rockinger (2006) show that the variance /VLI(,Q), skewness ,uf’), and

2This property can be seen using the Cauchy-Schwarz inequality: For two random variables X

and Y, |E(XY)| < VE(X2)E(Y?).



kurtosis ,u,(f) of the index portfolio return can be written as

qu(aQ) — thMgw
) = W' My (w e w)

,uI(f) = VW MwQw®w).

The N-vector w denotes the weights of the stocks in the index portfolio. Given

our constant correlation assumption, we can rewrite Equations (3) as functions of

Skew Kurt

the correlations pV%", p
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Using this auxiliary matrix QY% we can rewrite the covariance matrix as
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In the same spirit, we define the auxiliary matrix Q%% € My, y2(R) as
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To do so, we define an auxiliary matrix



The co-skewness matrix can be rewritten as

. 3 3 ew ew
My = diag(p?, ..., uy)) + pFev . Q*

and the portfolio skewness as

- 3 3 ew ew
pf) = W' [diag(ut?, . u) + pF - Q%) (w @ w).

Finally, we define the auxiliary matrix Q5% € My, y3(R) as
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The expressions on the right hand side of Equations (10) to (12) depend on the
portfolio weights, the second to fourth central moments of the portfolio and the

second, third, fourth, and sixth moments of the individual assets.

If options on the index and on all component stocks are available, we can estimate the
correlation structure using option information only. We take the implied moments
needed from plain-vanilla options written on the index and on individual assets
and use the known index weights. With the estimation of the implied correlation
estimators, we have also solved the problem of implied estimation of the whole co-

moment matrices My, Ms, and M, in Equations (4), (6) and (8). All remaining

QVar QSkew QKurt
)

parameters, in particular the auxiliary matrices , and , can easily

be obtained from the implied moments of the individual stock returns.

III Data

The data set for our empirical study consists of the stocks constituting the Dow
Jones Industrial Average (DJIA) for the period January 1998 to January 2012. For
each point of time, we consider only the 30 stocks which form the index at that

time.

To implement our implied estimators of generalized correlations and co-moment
matrices, we need prices of European-style options for all individual stocks and the
Dow Jones Index. We calculate these prices from the volatility surfaces provided
by IvyDB. We use all available strike prices for the 30 days maturity bucket, select
all out-of-the-money put and call options, and fit a cubic spline to obtain a smooth
volatility curve for each stock and the index. Outside the available range of strike
prices, we assume that the volatility curve is flat. Then, we select 1000 equally
spaced strike prices on the interval [0.003 - S;, 3 - S;], where S; denotes the current
spot price of the ith asset. For these 1000 strike prices we finally calculate prices of
European options from the corresponding implied volatilities via the Black-Scholes

formula. These calculations use the matching spot prices for all stocks and the index



as well as the risk-free interest rates provided by IvyDB. We calculate monthly option
prices and choose the first trading day after the expiration day of options contracts
at CBOE within a month, since there are liquid options with a time to maturity of

about 30 days at these days.

Using this data set, we calculate model-free implied moments. This idea of not using
a particular valuation model goes back to Breeden and Litzenberger (1978), who
show that the complete risk-neutral return distribution can be derived from option
prices if a continuum of strike prices is available. Based on the result by Bakshi
and Madan (2000) that any payoff function can be spanned by explicit positions
in options with different strike prices, Bakshi, Kapadia, and Madan (2003) provide
pricing formulas for contracts whose payoffs equal the squared return, the cubed
return, quadrupled return etc.® For our purposes, we need the returns up to the
power of six. The fair values of the corresponding contracts Quad, Cubic, Quartic,
Quintic, and Hexic are provided in the appendix together with the formulas that
show how the model-free implied second to sixth central return moments can be
obtained from the prices of these contracts.

In Section IV we provide characteristics of the implied generalized correlations p"¢",

Skew

p ’ and pKurt

. In Section V, we compare a portfolio strategy using the implied
estimator of the co-moment matrices My, Ms, and M, with portfolio strategies
using various historical estimators. To implement the historical estimators and
to calculate monthly out-of-sample returns for the trading strategies, we take stock
prices (adjusted for dividends and stock splits) from Datastream. Since the historical
estimators use estimation windows of up to 120 months, we have to take stock price

data for the period January 1988 to January 2012.

3The formulas given in the original work by Bakshi, Kapadia, and Madan (2003) refer to log
returns. See Christoffersen, Jacobs, and Chang (2012) for corresponding formulas referring to
simple returns. The latter are used in this study.
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IV Characteristics of Generalized Correlations

We now analyze the estimated dependence structure. In Section A we provide
descriptive evidence on how the dependence structure changes over time and in

Section B we identify factors that determine the strength of the dependencies.

A Dynamics of Generalized Correlations

Figure 1 shows the monthly implied estimates of the generalized correlation coeffi-

cients p¥, pSkv and p&t for the period February 1998 to January 2012.

[ Insert Figure 1 about here ]

Var eyolves over time.

The solid line in Figure 1 shows how the standard correlation p
Not surprisingly, it is always positive, i.e., a negative shock in one stock goes along
with a price reduction in other stocks. On average, the correlation is 0.45 but it goes
up to 0.85 during the recent financial crisis. This is consistent with earlier evidence

that correlations go up when markets go down.

Skew is almost always negative, as shown by

The sign of the skewness-correlation p
the dotted line. It can be as low as -0.49. This finding means that a negative shock
in one of the assets is associated with an increase in the volatility of other stocks.
This finding complements earlier evidence showing that a negative shock in a stock

tends to increase the volatility of the same stock.

Kurt

For the kurtosis-correlation p““"* we generally find positive values (dashed line).

Var and reach its maximum at 0.78. This

They are almost as high as the value for p
result suggests that a negative shock in one stock makes the returns of other stocks

more skewed to the left.

Figure 1 shows that all implied dependencies change dramatically over time. This
finding suggests that not only the standard correlation but also the skewness-

correlation and the kurtosis-correlation are hard to estimate from time-series data.

11



From 2004 to 2007, the (absolute) values of all three dependence measures are rel-
atively low, and from 2008 onwards they are relatively high. This is an indication
for stronger contagion effects in the financial crisis. A shock in one stock affects the

moments of other stocks more severely during the crisis than during quiet periods.

We also observe that the three implied dependence measures clearly move together.

If p¥V is high, then p*¢* tends to be low (more negative) and pX** tends to be

r Skew

high. The corresponding correlations between p"* and p and between pVo"

Kurt are -0.73 and 0.96, respectively. This is bad news for investors since a

and p
negative shock in one stock has a strong negative impact on the expected returns,
the variances and the skewnesses of other stocks. The expected returns decrease, the
variances increase, and the stocks become more skewed to the left. Thus, the saying

that diversification benefits tend to be low at times when they are most needed holds

not only for second moments but also for moments of higher order.

B Determinants of Generalized Correlations

We now analyze factors determining the generalized correlation coefficients. We run
regressions with our generalized correlation coefficients p¥", po%¢* and p%“* as the

dependent variables.

Our first explanatory variable is the market risk since it has been documented for
a long time that the standard correlation goes up when market risk goes up (see,
e.g., King and Wadhwani (1990), Longin and Solnik (1995)). We use two variables
to capture market risk. The first variable, the index variance, measures the general
market risk and the second variable, the index skewness, captures the crash risk
in the market. Both variables are calculated for the same trading days as our

correlation coefficients using our model in Section II.

Longin and Solnik (2001) show that the standard correlation is related to the market
trend. Therefore, we include the market trend as an additional variable in our

regressions. More specifically, we define a dummy variable which takes on the value

12



1 when the return of the previous month is negative and larger (in absolute terms)
than one standard deviation. Otherwise this downturn dummy takes the value of

Zero.

Next, we consider investor sentiment in our regressions since Kumar and Lee (2006)
have shown that sentiment makes retail investors trade similarly leading to return
comovements. To capture retail investor sentiment, we use the Individual Investor
Sentiment Index (AAII) which is obtained from a survey of the American Association

of Individual Investors among its members.

As a further explanatory variable we use the importance of common factors for
explaining stock returns. The rationale is that we expect to see a higher correlation
when stock returns depend on common factors to a higher degree. To capture the
relative importance of common factors, we estimate a Carhart 4-factor model using
daily returns of the previous month. We then calculate how much of the return
variance is explained by this model and relate the explained variance to the overall
variance. We do so for each stock in our sample separately, calculate the average
across stocks, and take this average number as our measure of the importance of

common factors for explaining stock returns.

Since our generalized correlation measures are derived from options prices and, there-
fore, reflect the expectations of market participants in the options market, we use
two further control variables. We control for the impact of the general economic out-
look on the expectations by using the OECD Composite Leading Indicator US as an
additional explanatory variable. The Composite Leading Indicator comprises differ-
ent macroeconomic and financial variables that are known to be leading indicators of
economic growth. In addition, we take into account that market participants might
change their expectations about return dependencies only gradually. Therefore, we

also include the corresponding lagged (generalized) correlation in the regressions.

[ Insert Table 1 about here |

In Table 1 we present the results of our regressions. In all regressions, we calculate

13



Newey-West standard errors with 12 lags to account for residual autocorrelation and
heteroscedasticity. The dependent variable is the implied standard correlation, p¥*",

Skew

in the first column, the implied skewness-correlation, p , in the second column,

Kurt

and the implied kurtosis-correlation, p , in the third column.

The first column shows that the standard correlation increases when the market
risk becomes larger. The positive coefficient for the index variance means that the
correlation goes up when the market becomes more volatile, and the negative coef-
ficient for the index skewness implies that the correlation goes up when the market
becomes more skewed to the left. Thus, both, the general market risk (index vari-
ance) and the crash risk (index skewness), have a significant impact on the standard
correlation. This is consistent with what we expect given the evidence in the litera-
ture. Moreover, we find a significant negative impact of the downturn dummy, which
means that correlation goes up when the market goes down. This is consistent with
the view that the market trend has an additional influence even after controlling for
market risk. The highly significant and negative coefficient of the investor sentiment
proxy indicates that the standard correlation goes up when investor sentiment be-
comes bad. This finding is consistent with Kumar and Lee (2006) and suggests that
investors treat different stocks similarly when their sentiment is bad. There is also
a strong impact of the importance of common factors for explaining stock returns.
This finding is highly sensible: If stock returns are mainly driven by common factors
and not by idiosyncratic factors, we observe a higher standard correlation between
the stocks. We also find that the correlation expected by the market participants
depends on what the market participants expect about the future economic growth.
The worse the economic outlook, the higher the implied correlation is. This is con-
sistent with our findings that the correlation goes up when the expected market
risk (captured by the implied variance and implied skewness) increases: The worse
the expectation about the future situation, the higher the correlation is. The sig-
nificantly positive coefficient for the lagged correlation suggests that the correlation

expectations of market participants are somewhat persistent.

Turning to the higher-order correlations shows that the kurtosis-correlation depends

14



on the factors in the same way as the standard correlation. Thus, if a factor increases
the standard correlation it also increases the kurtosis-correlation. In such a situation,
investors who observe a negative shock in one stock not only expect that the returns
of other stocks go down (reflected in the positive standard correlation) but they
also expect that the crash risk of other stocks goes up (reflected in the positive

kurtosis-correlation).

Skew also depends on the market

Looking at the skewness-correlation shows that p
risk. The signs of the coefficients suggest that an increase in the market risk (index
becomes more volatile and more skewed to the left) makes the skewness-correlation
more negative. However, we find only a significant impact of the crash risk (mea-
sured by the index skewness) whereas the general market risk is not significant at
conventional levels (p-value = 0.17). Besides market risk, the importance of common
factors for explaining stock returns has a strong impact on the skewness-correlation:
The skewness-correlation becomes the more negative, the more important common
factor are for explaining stock returns. The downturn dummy and the investor sen-
timent have no significant impact on the skewness-correlation. Like for the other
implied correlation measures, we find that the expected skewness-correlation de-

pends on the general economic outlook and on the expectation a month ago: The

worse the outlook, the more negative the skewness-correlation is.

Overall, the standard correlation and higher-order correlations are well explained
by the explanatory variables. The explanatory power is equally high in all regres-
sions. Furthermore, we find that the control variables economic outlook and lagged
correlation are significant, no matter which implied correlation we analyze. This
suggests that the investors adjust their expectations about future dependencies only

gradually and in accordance with their expectations about future economic growth.

Looking at the other explanatory variables shows that standard correlation and
kurtosis-correlation are driven by the same set of variables. First, they increase
with the market risk, they are higher in market downturns, during periods when

investor sentiment is bad and when stock returns are better explained by common

15



factors. When looking at the skewness-correlation, only a subset of our explana-
tory variables (market risk, importance of common factors) is significant whereas
the market downturn and investor sentiment are not significant at the conventional
levels. To understand that difference, we have to keep in mind that the standard
correlation and the kurtosis-correlation provide directional information about fu-
ture returns whereas the skewness-correlation provides only information about the
variability of future returns. The standard correlation (kurtosis-correlation) tells us
what return (crash risk) the investors expect in other stocks when they receive a
negative signal in one stock. For example, it is highly sensible that a negative signal
in one stock makes them expect a worse return (higher crash risk) in other stocks
when their sentiment is bad. However, it is not clear why that signal would make
them expect the other stocks to be more volatile when their sentiment is bad. That

is what a significant impact of investor sentiment on skewness-correlation would

imply.

V Portfolio Application

A The Portfolio Problem

We analyze a standard one-period expected utility maximization. For an infinitely
differentiable utility function U, the utility of the investor’s terminal wealth can be

written as:

ad (k)
vow) = 3 | v - ppryy|. (13

with W = (1 + w"R).

w denotes a column vector of length N and contains the portfolio weights of the
N different assets. R denotes the corresponding column random vector of asset

returns over the period. Without loss of generality, the investor’s initial wealth is

16



normalized to unity in Equation (13). We follow the typical approach and assume
that the utility function is well approximated by a fourth-order polynomial. Thus,

the expected utility of the investor is given as:

@)
E{UW)} ~U(E{W?}) + wu(m
+ —U(B)(i{w} ) + —U(4)(;Ej W )

with 1® = W' My w,
,u(3) =" M; (w (2] w)’

p® = Wt My (w Q@ wQw).

M, denotes the covariance matrix of asset returns, M3 the co-skewness matrix, and
M, the co-kurtosis matrix. It is well known that expected returns are very difficult
to estimate (see, e.g., Merton (1980)) and that portfolio strategies ignoring expected
returns typically perform better (see, e.g., Michaud (1989), Best and Grauer (1991),
and Chopra and Ziemba (1993)). Therefore, we make no attempt to estimate ex-
pected returns and focus on minimizing the risk of the portfolio. The portfolio risk

depends on the variance, skewness, and kurtosis of the portfolio return.

To be able to solve for the optimal portfolio weights, we have to specify the util-
ity function in Equation (14). We assume that the investor has CRRA preferences
with a relative risk aversion 7. We impose short-sales constraints since such re-
strictions typically improve the out-of-sample performance of investment strategies
(see, e.g., Frost and Savarino (1988), Jagannathan and Ma (2003), and DeMiguel,

Garlappi, and Uppal (2009)). Given these assumptions, the optimization problem

17



of the investor can be written as:

1
argmax | — zw”]\@w + Mw”Mg(u} R w)
weRN 2 6
1 2
_7(7"’ )(7“’ >w”M4(w®w®w) ; (15)

24

N
s.t. Zwi =1,
i=1

Equation (15) shows that an investor with CRRA utility has a preference for low
variance, high skewness, and low kurtosis. This preference structure is consistent
with Rubinstein (1973), Kraus and Litzenberger (1976), and Scott and Horvath
(1980) who show that only weak assumptions on the utility functions are needed to
derive preferences for low variance, high skewness, and low kurtosis. Furthermore,
Equation (15) shows that higher moments are the more important to an investor,

the more risk averse she is.

B Design of the Empirical Portfolio Study

To implement the optimal investment strategy arising from (15), we have to estimate
the matrices My, M3, and My. We use five different ways to estimate the matrices.
The first estimator is our fully-implied estimator derived in Section II. The other
four estimators serve as historical benchmarks. We use the simple sample estimator
(Sample) as our first benchmark. The other benchmarks are the estimators derived
by Martellini and Ziemann (2010) for estimating higher-order moments. Their two
structured estimators assume constant correlations (CC) and a single-factor model
(FM), respectively. Their other two estimators shrink the sample estimates of the
moment matrices My, Ms, and M, towards the estimates obtained under the con-

stant correlation (Sh-CC) or the single-factor model (Sh_-FM).

18



Based on each estimator, we set up the following investment strategy. In each
month, we use the respective estimator to obtain My, M3, and M,. Based on these
estimates, we derive the optimal portfolio using (15). Then we calculate the out-
of-sample one-month return of this portfolio. This procedure gives us 168 monthly

portfolio returns for each of the estimators.

To compare the performance of the investment strategy based on the implied esti-
mator with the benchmark strategies, we calculate monetary utility gains (MUGs)

as in Ang and Bekaert (2002). For v # 1 the MUG is given as:

TR 1+ -1 1 K1+ MUG) - (L+rm) 7 1 (16)
168 < 1—v 168 1—v ‘

rmPl denotes the return of an trading strategy using the implied estimator and r*™
the return of a benchmark strategy using a historical estimator. Thus, MUG is the
monetary compensation (in percentage points) that an investor requires to be willing
to switch from the portfolio strategy using the implied estimator to a benchmark
portfolio strategy using a historical estimator. A positive MUG means that the
investor prefers the implied estimator and is willing to use the historical estimators
only if she gets a compensation. Therefore, a positive MUG indicates that the
implied estimator is superior to the respective historical estimator. In the following

section we report annualized MUGs which are calculated as (1 + MUG)" — 1.

C Main Results

Table 2 reports the annualized monetary utility gains (MUGs) of the implied portfo-
lio strategy relative to the five historical benchmark strategies based on the sample
estimator (Sample), the estimator based on the assumption of constant correlations
(CC), the estimator using a factor model (FM), the shrinkage model towards con-
stant correlation (Sh_-CC), and shrinkage model towards the factor model (Sh-FM),

respectively. The relative risk aversion of the investor is v = 10. In the first column
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the historical estimators use an estimation window of 60 months and in the second

column an estimation window of 120 months.

[ Insert Table 2 about here |

The main result of Table 2 is that the MUGs are positive in all cases (no matter
whether the historical estimators use an estimation window of 60 or 120 months).
This means that investors would be willing to use a historical estimator instead of
the implied estimator only if they get a monetary compensation. The size of the
required compensation ranges from 2.4% to 4.8% per year. These are huge numbers
given that the average returns of the benchmark strategies are only between six and
seven percent per year. This result shows that our implied estimator is very valuable

for investors.

In Table 3 we compare the implied strategy with various partially implied strategies
to analyze how much of the MUGs come from using option-implied information to
estimate the co-skewness and co-kurtosis matrices. The partially implied strategies
use our implied estimator for the covariance matrix and historical estimators for the

higher moments. The historical estimators are the same as in Table 2.

[ Insert Table 3 about here |

Table 3 shows that the MUGs are much smaller than in Table 2 but still positive. The
required compensation is between 0.4% and 1.2% per year. This means that investors
would be willing to use a historical estimator for higher moments and co-moments
instead of the implied estimator only if they get a sizable compensation. The level
of required compensation is about the same as in Ang and Bekaert (2002). This
suggests that using implied estimators for higher moments is about as important for
investors as taking into account that model parameters might be different in different
regimes. This is sensible since a major advantage of our implied estimator is that it
does not use historical information and, thus, immediately adjusts when the regime

changes. Comparing our results with those in Martellini and Ziemann (2010) shows
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that the marginal contribution of our implied estimator for higher-order moments
is larger than the marginal contribution of their structured estimators. They report

a maximum required compensation of 0.26% per year in Panel B of their Table 10.

In Table 4 we provide information about the portfolio composition when using dif-
ferent estimators. We report the average number of stocks held in the portfolio
(first column) and the average Gini coefficient of the portfolio (second column).

The averages are calculated across the monthly portfolio weight observations.

[ Insert Table 4 about here |

Table 4 shows that the implied estimator leads to more concentrated portfolios. The
number of stocks held is lower and the Gini coefficient is higher. On average, the
investor picks only about nine stocks from the investment universe of thirty stocks
when using the implied estimator. For the historical estimators, the number of
stocks held is larger by two to four stocks. Together with our results in Table 2,
this finding suggests that the implied estimators allows the investors to better pick

appropriate stocks.

D Robustness Checks

In Table 5 we repeat the analysis of Table 2 but now for different levels of risk
aversion. The risk aversion is varied from v = 5 to v = 15. We use an estimation

window of 60 months for the benchmark strategies.

[ Insert Table 5 about here |

Table 5 clearly shows that the MUGs are the larger the more risk averse the investors
are. This finding holds for each benchmark strategy. Averaged across the benchmark
strategies, we find an average MUG of 2.2% for v = 5, 3.2% for v = 10, and 4.1%
for v = 15. Thus, investors value the implied estimator more if they are more

risk averse. This result is highly sensible since variance, skewness, and kurtosis

21



are the more important, the more risk averse investors are (see Equation (15)).
Therefore, investors with a higher risk aversion benefit more from an improved

moment estimation.

We next check whether our results depend on the size of the investment universe.
So far, we assume that the investor can choose from an investment universe of 30
stocks. We now restrict the investment universe to 20 (10) stocks that are randomly
drawn out of the 30 stocks constituting the Dow Jones Industrial Average (DJIA).
Using this restricted investment universe, we repeat the analysis of Table 2. We do
so 100 times for the investment universe of 20 stocks and another 100 times for the
investment universe of 10 stocks. The average MUGs and the percentage of positive
MUGs (in brackets) are reported in Table 6. For comparison reasons we repeat the
numbers for N=30 stocks from Table 2. We again use an estimation window of 60

months for the benchmark strategies.

[ Insert Table 6 about here |

Table 6 shows that the average MUGs are positive in all cases. Thus, our main result
is robust with respect to the size of the investment universe. Averaged across the
benchmark strategies, we find a positive relation between the size of the investment
universe and the size of the MUGs (average MUG = 2.52% for N=10, average
MUG = 2.61% for N=20, MUG = 3.21% for N=30), but this relation does not hold
when looking at the benchmark strategies separately. However, what we see for
each benchmark strategy is that the probability of achieving a positive MUG goes
up when the investment universe becomes larger. Averaged across the benchmark
strategies, we find that the probability of achieving a positive MUG is 81.2% for
N=10 and 91.6% for N=20. This suggests that an investor can pocket the gains of

our implied estimator more easily when she holds a larger portfolio.

In our final robustness check we split our sample in two sub-samples of equal length.
The first sub-sample covers the period from February 1998 to January 2005 and the
second sub-sample the period from February 2005 to January 2012. We repeat the

22



analysis of Table 2 for both sub-samples and again use an estimation window of 60

months for the benchmark strategies. Table 7 presents the resulting MUGs.
[ Insert Table 7 about here |

Table 7 suggests that our main result is not sample specific. The MUGs are positive
in both sub-samples. Interestingly, the MUGs are much larger in the second sub-
period. A possible reason for this finding is that this period covers the financial crisis.
Kempf, Korn, and Saning (2011) argue that implied estimators perform particularly
well in crisis periods for two reasons: First, historical time series are less useful in
crisis periods due to the strong inflow of new information. Second, option prices
carry more information in crisis periods since the fraction of informed traders in
the option market goes up. This makes option prices more informative. Therefore,
the implied estimator is particular attractive in crisis periods which should lead to

higher MUGs. That is exactly what we find.

VI Conclusions

This paper investigates higher-order dependencies between assets. Since dependen-
cies are known to change over time and, therefore, hard to estimate from time-series
information, we suggest a novel way to estimate higher-order dependencies. Our
model allows us to derive generalized correlation coefficients for skewness and kur-
tosis using only current option-implied information. We do not need any time-series
information to estimate them. Thus, our approach is inherently forward-looking
and incorporates most recent information from options markets. The implied gen-
eralized correlations have intuitive interpretations in term of the expected impact
that a shock in one asset has on the expected return, variance, and skewness of
other assets. The correlations build the basis for an implied estimator of the full

covariance, co-skewness, and co-kurtosis matrices that we also present in this paper.

In an empirical study for US blue-chip stocks, we provide evidence on the charac-

teristics of the implied generalized correlations over time. We document that the
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correlations vary heavily over time and detect the factors that determine the implied
correlations. We first show that investors adjust their expectations about future de-
pendencies only gradually and in accordance with their expectations about future
economic growth. We then find that standard correlation and kurtosis-correlation
are driven by the same set of factors. Both correlations increase with the market
risk, they are higher in market downturns, during periods when investor sentiment is
bad and when stock returns are better explained by common factors. The skewness-
correlation, however, depends only on a subset of our explanatory variables (market
risk, importance of common factors). This is sensible since the standard correlation
and the kurtosis-correlation provide directional information about future returns
whereas the skewness-correlation provides only information about the variability of

future returns.

We use the implied generalized correlations in a empirical portfolio optimization
exercise. An out-of-sample study for the same universe of US blue-chip stocks shows
that our implied estimator of higher-order moment matrices is very valuable for
investors that seek optimal portfolios based on second to fourth moments. We find
that a portfolio strategy based on the implied estimator beats several benchmark
strategies based on historical estimators. The monetary utility gains from using
the implied estimator instead of historical estimators are huge and can reach up to
seven percent per year. In a robustness analysis, we find that the implied estimator
is superior for a wide range of investors with different risk aversions, for alternative

sizes of the investment universe, and different sub-periods.

A major issue for future research is the risk-adjustment of option-implied higher
moments. The moments used in this study are obtained under the risk-neutral
measure, whereas most applications require moments under the physical measure. If
appropriate risk-adjustments are available, further improvements in the assessment
of higher-order dependencies are likely. Unfortunately, such a risk-adjustment is
difficult since very little is known about risk premiums for higher-order co-moments.
The implied estimators of these co-moments that we develop in this paper, however,

offer a way to study such risk premiums empirically.
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Appendix

Bakshi, Kapadia, and Madan (2003) show how to price contracts whose payoffs
equal different powers of the returns. For our analysis, we need powers up to the
order of six. Denote the arbitrage-free prices at time ¢ for contracts maturing at
time ¢ + 7 by Quad (squared returns), Cubic (cubed returns), Quartic (quadrupled
returns), Quintic (returns to the power of five), and Hezic (returns to the power of

six). According to Bakshi, Kapadia, and Madan (2003), these prices equal

e St
2
Quad = @ /C(t,T, K)dK—l—/P(t,T, K)dK
! LSt 0
(TK_s TK_s
Cubic = % _ tC(t,T,K)dK+/ "t P(t, 7, K)dK
St St t
_St 0
12| [ /K- K-
Quartic = 5] /< St) C(t, 1, K) dK+ ( St) (t,7,K)d
! LSt i
20 | [ /K- K-
Quintic = 5_2 /< St) C’tTKdK+ ( St) (t,7,K)d
! LSt _
K- K-
Hexic = 22 /( St) C(t,r, K)dK + ( St) (t,7, K)dK | ,
t
LSt _

where S; is the current spot price, K the strike price, and C' and P denote the
prices of call and put options, respectively. Using these contract prices, the model-
free implied second, third, fourth, and sixth central return moments of asset i can

be written as
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@) = ¢"Quad; — E[R;)?,

i smpl

i = €7 Cubic; — BEY[Re Quad; + 2[R}, (17)
Mg?mpl = " Quartic; — 4B R;]e" Cubic; + 6 EY[R;]*¢"™ Quad; — 3E[R;]*,
Mz(,(ii)mpl = ¢THexic; — 6e"™Quintic; B[ R;] + 15e"™ Quartic; B[ R;]?

—20e" " Cubic; B[ R;)* + 15¢"" Quad; B[ R;|* — 5E[R;]°,

where 7 denotes the risk-free interest rate per year for the period 7 and E9[R;| the

risk-neutral expectation of the ith asset. The risk-neutral expectation is given by
EYR;)| =€ —1.

The expressions in Equations (17) together with this expectation deliver the mo-
ments of individual stocks that we use for our analysis. Implied moments for the

Dow Jones Index are obtained in the same way.
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Figure 1: Implied Estimates of Generalized Correlations Over Time.
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This figure shows the implied estimates of the standard and the higher-order correlations p" ",
p3*ew and p&urt gver time. All correlations are calculated as described in Section II. The time
period is February 1998 to January 2012 and the stock universe consists of the 30 stocks included

in the Dow Jones Industrial Average (DJIA).
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Table 1: Determinants of Implied Correlations.

pVar pSkew pKurt
Constant 0.940 -0.613 1.982
(0.004) (0.000) (0.000)
Index Variance 6.801 -4.522 8.881
(0.067) (0.172) (0.050)
Index Skewness -0.066 0.153 -0.143
(0.002) (0.000) (0.000)
Market Downturn 0.059 -0.019 0.057
(0.005) (0.124) (0.087)
Investor Sentiment -0.063 0.000 -0.070
(0.000) (0.995) (0.009)
Importance of Common Factors 0.287 -0.161 0.267
(0.000) (0.000) (0.000)
Economic Outlook -0.010 0.008 -0.021
(0.001) (0.000) (0.000)
Lagged Correlation 0.500 0.359 0.386
(0.000) (0.000) (0.000)
Adjusted R? 0.745 0.745 0.657

This table shows the results of multivariate regressions using monthly observations for the period
February 1998 to January 2012. The dependent variable is the standard correlation, p¥ %", in the
first column, the skewness-correlation, p°*¢*  in the second column, and the kurtosis-correlation,
pKurt in the third column. The time series of the dependent variables are shown in Figure 1. The
independent variables are as follows. We use the implied index variance and the implied index
skewness to capture symmetric market risk and market crash risk, respectively. Both variables
are calculated using our model in Section II. To measure the market trend, we use a downturn
dummy that takes on the value 1 when the return of the previous month is negative and larger (in
absolute terms) than one standard deviation. Otherwise the downturn dummy takes the value of
zero. We capture investor sentiment using the Individual Investor Sentiment Index of the American
Association of Individual Investors. The importance of common factors measures how important
common factors are for explaining stock returns. To capture the importance of common factors, we
first estimate for each stock a Carhart 4-factor model using daily returns of the previous month. We
then calculate how much of the return variance is explained by this model and relate the explained
variance to the overall variance. We do so for each stock in our sample, calculate the average
across stocks, and take this average number as our explanatory variable. The economic outlook
is measured by the OECD Composite Leading Indicator US. Finally, we use the corresponding
lagged correlations to capture the effect that market participants might revise their expectations
only gradually. In all regressions, we calculate Newey-West standard errors with 12 lags and report
p-values in brackets.
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Table 2: Monetary Utility Gains: Implied Moment Estimator versus Historical

Estimators.
60 Months 120 Months
Sample 2.66% 2.69%
CcC 4.82% 4.11%
FM 2.82% 2.71%
Sh_CC 3.35% 3.32%
Sh_FM 2.39% 2.69%

This table shows the annualized monetary utility gains of the investment strategy using the implied
estimator relative to an investment strategy using a historical estimator. The monetary utility
gains are calculated based on Equation (16) and annualized as (1 + MUG)? — 1. The historical
estimators are the sample estimator (Sample), the estimator based on the assumption of constant
correlations (CC), the estimator using a one-factor model (FM), the shrinkage model towards
constant correlation (Sh-CC), and the shrinkage model towards the factor model (Sh-FM). In the
first column the historical estimators use an estimation window of 60 months and in the second
column an estimation window of 120 months. The relative risk aversion of the investor is v = 10.
The out-of-sample sample period is February 1998 to January 2012 and the investment universe
consists of the stocks included in the Dow Jones Industrial Average (DJIA).
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Table 3: Monetary Utility Gains: Implied Moment Estimator versus Partially Im-
plied Estimators.

60 Months 120 Months
Sample 1.25% 0.37%
CC 0.66% 0.71%
FM 0.49% 0.42%
Sh_CC 0.63% 0.68%
Sh_ FM 0.82% 0.69%

This table shows the annualized monetary utility gains of the investment strategy using the implied
estimator relative to an investment strategy using a partially implied estimator. The monetary
utility gains are calculated based on Equation (16) and annualized as (1 + MUG)'? — 1. The par-
tially implied estimators consist of an implied estimator for the covariance matrix and historical
estimators for the co-skewness and co-kurtosis matrices. The historical estimators are the sample
estimator (Sample), the estimator based on the assumption of constant correlations (CC), the esti-
mator using a one-factor model (FM), the shrinkage model towards constant correlation (Sh-CC),
and the shrinkage model towards the factor model (Sh-FM). In the first column the historical esti-
mators use an estimation window of 60 months and in the second column an estimation window of
120 months. The relative risk aversion of the investor is v = 10. The out-of-sample sample period
is February 1998 to January 2012 and the investment universe consists of the stocks included in
the Dow Jones Industrial Average (DJIA).
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Table 4: Concentration Measures of Portfolios Based on Different Moment Esti-

mators.
Number of Stocks Held Gini Coefficient
Implied 8.77 82.59%
Sample 11.13 78.02%
CcC 12.82 78.05%
FM 12.12 77.60%
Sh_CC 12.97 77.07%
Sh_FM 12.77 76.03%

This table shows the average number of stocks and the Gini coefficient of the portfolios under-
lying Table 2. We report values for the portfolios using the implied estimator (Implied), the
sample estimator (Sample), the estimator based on the assumption of constant correlations (CC),
the estimator using a one-factor model (FM), the shrinkage model towards constant correlation
(Sh_CC), and the shrinkage model towards the factor model (Sh-FM). The estimation window for
the historical estimators is 60 months.
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Table 5: Monetary Utility Gains for Different Levels of Risk Aversion: Implied
Moment Estimator versus Historical Estimators.

Yy=5 v =10 v=15
Sample 2.05% 2.66% 2.79%
CC 3.09% 4.82% 7.00%
FM 2.00% 2.82% 3.61%
Sh_CC 2.31% 3.35% 4.61%
Sh_FM 1.78% 2.39% 2.71%

This table replicates Table 2 for different levels of relative risk aversion. The relative risk aversion
of the investor is v = 5, v = 10, and v = 15, respectively. The estimation window for the historical
estimators is 60 months.
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Table 6: Monetary Utility Gains for Different Sizes of the Investment Universe:
Implied Moment Estimator versus Historical Estimators.

N =10 N = 20 N = 30
Sample 2.43% (79%) 2.08% (85%) 2.66%
CC 3.45% (89%) 4.46% (100%) 4.82%
FM 1.85% (73%) 1.70% (88%) 2.82%
Sh_CC 2.84% (86%) 3.01% (99%) 3.35%
Sh_FM 2.02% (79%) 1.81% (86%) 2.39%

This table replicates Table 2 for different sizes of the investment universe. We restrict the invest-
ment universe to N=20 (N=10) stocks which are randomly drawn out of the 30 stocks constituting
the Dow Jones Industrial Average (DJIA). Using this restricted investment universe, we repeat
the analysis of Table 2. We do so 100 times for the investment universe of 20 stocks and another
100 times for the investment universe of 10 stocks. The average MUGs and the percentage of
positive MUGs (in brackets) are reported for N=10 and N=20. For comparison reasons we repeat
the numbers for N=30 stocks from Table 2. The estimation window for the historical estimators
is 60 months.
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Table 7: Monetary Utility Gains for Different Sub-periods: Implied Moment Esti-
mator versus Historical Estimators.

Period Feb 1998 — Jan 2005 Period Feb 2005 — Jan 2012
Sample 1.31% 4.16%
CC 4.37% 5.32%
FM 1.95% 3.79%
Sh_CC 2.43% 4.38%
Sh_FM 1.25% 3.66%

This table replicates Table 2 for different sub-periods. The first sub-period covers February 1998 to
January 2005 and the second sub-period February 2005 to January 2012. The estimation window
for the historical estimators is 60 months.
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